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Abstract 
Robust  linear  parameter  varying (LPV) control de- 
sign  techniques are applied to  the  attitude control of 
the X-33, a single-stage to  orbit  prototype vehicle. 
The focus of the research is to develop  techniques 
which will  allow for a  variety of trajectories  without 
significant  redesign of the control  system. The  LPV 
design  method is described,  and  applied to a  repre- 
sentative  problem:  control of the pitch  axis  dynamics 
during  ascent. The work is on-going  and this  paper 
details  the design  problem  formulation. 

1 Introduction 
This  paper  reports  on  research  into the design of at- 
titude controllers for the X-33; a  single-stage-to-orbit 
prototype  vehicle.  The X-33 is equipped  with  a novel 
thrust vectoring  aerospike  engine, as well as aerody- 
namic  surfaces and reaction  control thrusters. 

The flight path typically  goes from lift-off at  the 
Earth’s surface to  an  altitude of 54 km (180,000 feet) 
and back to ground level for a  runway  landing.  At- 
titude  control is a  challenging  problem  because of 
the wide variation  in the dynamic  behavior  along the 
flight path.  The  traditional  gain scheduling  approach 
involves selecting  a  large  number of operating  points 
along the flight path  and designing  a fixed structure 
linear  controller for each. The final  control is imple- 
mented by interpolating between the controllers at  
each  point  on the flight path.  This design approach 
is time  consuming and does  not  lend itself to rapid 
trajectory redesign. 

The Marshall  Space  Flight  Center  (MSFC) is sup- 
porting  a  research  program  investigating  alternative 
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attitude control  design  methods for the X-33 vehicle. 
Our work under this  program involves the application 
of the  robust linear  parametrically  varying  (LPV) 
methods to  the  attitude control  problem.  Such  meth- 
ods  have been developed  in  recent  years by several 
research  groups. See [I, 2, 3, 4, 51 and  the references 
therein. 

The  LPV design approach gives controllers which 
can  be viewed as being continuously  scheduled  as a 
function of measured  (or estimated) variables. The 
methodology  also  has the advantage of enabling the 
control  problem (trajectory  tracking  and  disturbance 
rejection) to be  cast  in a robust  control  framework, 
which also gives a  means of analyzing  robustness  with 
respect to unmodeled  dynamics.  Examples of typical 
unmodeled  dynamics  in this  application  domain  in- 
clude: fuel sloshing, structural  vibration modes,  aero- 
dynamic coefficients, and  thrust. Section 3 gives a 
more  detailed  description of the  LPV design method, 
and  Section 4 formulates  a specific design  problem 
for the X-33 vehicle. For prior  applications of this 
approach to flight control  problems  see [6, 71 and [8]. 

2 X-33 Attitude  Control 

2.1 Overview 

The  trajectory is divided  into  two  distinct  modes. 
The ascent  mode starts  at lift-off and continues to 
the main  engine cut-off in the upper  atmosphere. The 
transition  and  entry mode  begins at  main  engine  cut- 
off and  ends  just  prior to  the final  landing  approach. 
The  current design has  separate  guidance  and  atti- 
tude controllers for each  mode. 

In  ascent  mode the aerosurfaces and  the  main en- 
gine thrust vectoring are  the  actuators for the  atti- 
tude maneuvering.  During the  transition  and  entry 
mode the main  engine is shut off and  attitude ma- 
neuvering is available through  the  reaction control 
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Figure 1: Illustration of the X-33 vehicle showing the 
aerosurface actuators 

system-consisting of ten 500 pound  reaction jets- 
and  the aerosurfaces.  Figure 1 illustrates the X-33 
vehicle and aerosurface actuators. 

The  trajectory guidance and  attitude control are 
handled by separate modules  in the flight control sys- 
tem.  In  ascent mode the guidance  module  generates 
the engine thrust commands and a reference attitude, 
which is passed to  the  attitude controller in the form 
of an  inertial to  body  quaternion  and reference roll, 
pitch,  and yaw rates. The body axis rate commands 
can  be used to implement velocity or derivative feed- 
back. 

A navigation  module provides estimates of the in- 
ertial  to  body  quaternion,  as well as  estimates of the 
roll,  pitch,  and yaw rates.  Estimates of the angle-of- 
attack, a,  and  the side-slip angle, p ,  are also avail- 
able. For portions of the flight, an  air-data system 
provides measurements of these  quantities. 

2.2 LPV Application  Issues 
In common with the existing design methodology, the 
LPV  approach leads to a  gain scheduled controller. 
However the scheduling parameters  are based on en- 
vironmental, vehicle, and guidance  variables, rather 
than  the flight path.  This means that  the  LPV design 
will be applicable to  an envelope of flight conditions 
rather  than a  particular  trajectory. Redesign is not 
required for trajectories that remain  in the parameter 
design envelope. 

The  LPV controller is calculated  as an algebraic 
function of the measured/estimated scheduling vari- 
ables. This  contrasts  with  the  standard approach of 
using table lookups for scheduled  gains and provides 
a  reduction in the memory requirements.  Computa- 

tional  requirements are similar to existing  method- 
ologies. 

It is important  to  note  that  the  LPV methodology 
requires a (possibly nonlinear)  differential  equation 
based model. The system  dynamics are  not difficult 
to handle in this  context; a more challenging problem 
arises with the aerodynamic coefficients. Wind  tun- 
nel testing  and  CFD code are used to produce  lookup 
table based coefficients, typically  as  a  function of a,  
p ,  Mach number,  and  in  the case of aeroactuator  sur- 
faces, deflection angle. To apply the  LPV  method- 
ology the coefficients must  be modeled as  nonlinear 
functions of these  parameters.  This involves the ap- 
plication of multi-dimensional  curve  fitting, and gives 
a trade-off between model fidelity and model com- 
plexity. 

The  parametric  approximation of the aerodynamic 
database represents  a significant investment in  time. 
However the approximation is explicit and  the  ap- 
proximation  errors  can be quantified and  their effrcts 
analyzed  via the robust  control  analysis. 

2.3 Design problem 
A representative  problem was chosen to illustrate the 
application of LPV techniques. This was selected 
to be  pitch  axis  control  during  ascent for velocities 
greater  than Mach 2. The existing  ascent  controller 
has  independent  pitch  axis and  lateral axis  control, 
which means that  the  LPV design can  be  integrated 
into the existing  controller for testing. The veloc- 
ity range begins at approximately 125 seconds  after 
take-off. There is less aerodynamic coefficient varia- 
tion for velocities above Mach 2 which simplifies the 
aerodynamic  parameter  fitting  aspects of the prob- 
lem. Section 4 describes the problem in detail. 

The  restricted pitch  axis  problem is still  represen- 
tative of the difficulties that will be  encountered  in an 
LPV design for the complete attitude controller. The 
issues addressed  here  include: parametric modeling 
on the aerodynamic coefficients; wide variation in ef- 
fective actuator gain  due to  the variation  in  dynamic 
pressure; and significant center-of-mass and  inertia 
variation over the operating  range. 

3 LPV Design Methodology 
The discussion given here follows the approach  pre- 
sented by Helmersson [ 5 ] .  Figure 2 illustrates the 
manner in which the design problem is formulated. 

The  system, e(6), is a parametrically  dependent 
interconnection,  with  parameter  vector 6,  specify- 
ing the design problem. The  input  vector, 20, repre- 
sents  unknown,  bounded inputs;  in  our case,  guidance 
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Figure 2: Block diagram  illustration of the equivalent 
non-linear  model  frameworks. G(6) is a nonlinear 
input-output  representation  and G is an LTI system. 

commands,  sensor noise, thrust  and environmental 
disturbances. The error  signals, e, are  those  quan- 
tities which are required to  be  small, in a weighted 
sense: tracking  errors,  attitude deviations and ac- 
tuation effort. The formal specification of the con- 
troller  performance  requirement is that  the norm of 
closed-loop transfer  function from w to e (denoted by 
f i  (G(6), I?), where  indicates that  the lower loop is 
closed) is small, 

SUP IIeII2 = I I f i (G(6 ) ,k j I Im < 1. 
I l W l l Z < l  

Weighting functions  can specify frequency domain 
performance  requirements and  are included within 

The system is a  nonlinear  function of a  parame- 
ter  vector, 6. We can also include in 6 unknown 
bounded parameters  (or  perturbations) which repre- 
sent  modeling  uncertainty. 

Known or  estimated parameters-for exam- 
ple Mach number,  angle-of-attack, and dynamic 
pressure-are denoted by qi, i = 1, . ' . , r.  This  nota- 
tion  assumes r such  parameters.  Each  parameter, vi, 
may appear  repeatedly  in  the  representation  and  the 
values ni, i = 1, . . . , T ,  denote the respective number 
of occurrences of qi in 6. The repetition of param- 
eters allows for the modeling of polynomial depen- 
dence of the parameters. For example, if ql = V ,  and 
V 2  appears in the nonlinear  model, then we would 
require n1 2 2. In practice we Rormalize the param- 
eters so lqil 5 1 in the range of desired operation. 

Unknown, but bounded perturbations may also 
appear in 6 and  are  denoted by 6j , j = 1, . ' . , s. The 
6, may also appear repeatedly,  and we denote the 
number of repetitions of 6, by mj. The unknown per- 
turbations  are typically used to  model the effects of 
dynamic  uncertainty.  Examples  include the effects of 
unmodeled slosh or flex modes. The model is again 
normalized so that l6jl 5 1. Determining this nor- 

G(6). 

malization  amounts to  estimating the level of uncer- 
tainty we have about  the unmodeled  dynamics. 

There is a clear distinction between qi and 6,. 
Under operation, the controller will have access to 
a  measurement of qi and  these will in effect be  the 
scheduling variables. In  contrast  the 63 are unknown; 
the controller  must be able to  operate satisfactorily 
for all possible 6j with 1611 5 1. 

The nonlinear model, G(O), is reformulated  as the 
linear fractional  transformation  (LFT)  illustrated  in 
the right  hand  diagram of Figure 2. The  notation 
used to  separate 0 into an upper closed-loop block is, 
G(6) = Fu(G, 0).  In  this case, G is  now a linear time 
invariant  (LTI)  system, and 0 is a block diagonal 
matrix of parameters, 

0 = diag ( q l k , .  . . , q r L  6 1 1 ~ 1 , .  . . , & L ) .  
The design objective is to find a  controller, 

K ,  using measurements, y, and  actuators, u, 
to  ensure that &(Fu(G,O), I?) is stable  and 
ll&(Fu(G,O),I?)llm < 1 for all 0, 1 1 0 1 1  I 1. In 
the  standard  robust control  framework, K is a single 
LTI controller.  In the  LPV framework we allow I? 
to depend  on the known (or estimated)  parameters 
ql ,  . . . , qr. The controller  dependence  on q, is again 
in the  LFT framework, 

K = E ( ( K , r ] K ) ,  

where K is  now an LTI system. The  notation V K  
reflects the fact that  the controller  maintains an esti- 
mate of the system  parameters, q (or VG in the sub- 
sequent  discussion). The complete  interconnection is 
illustrated in Figure 3. The controller, F ~ ( K , ~ K ) ,  
can  be  interpreted  as  a  continuously  gain scheduled 
controller where q~ (which are  estimates of q ~ )  are 
the scheduling parameters. 

This  representation  has the advantage that  both G 
and K are LTI systems  with  state-space  representa- 
tions, allowing the design  problem to be  formulated 
in terms of the state-space  matrices of G. The pa- 
rameters, q ~ ,  q ~ ,  and  the  perturbations, 6, can  be 
represented as  either real  or complex valued. 

To simplify the discussion, we will initially  assume 
that  there  are no perturbations, 6. The state-space 
representation for G, with state vector X G ,  can  be 
written  as, 
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and 

[ 0 0 0 I 0  1 0 I 0 0 0  
V = C3 0 D31 0 0 3 2  . 

Now the problem  can be formulated  as the search 
for a  constant  matrix, I? with the closed-loop given 
by1 

Figure 3: Closed-loop LPV design framework with 
LFT representations of the  plant, F,(G, ( q ~ ,  d) ) ,  and X G ( k )  = Z-lXG(k f I), 
the controller, .Fl(K, q ~ )  z K ( k )  = Z - ' X K ( k  f I), 

and 

u ( k )  = VG z ( k )  

The zero term for 0 3 3  is without loss of generality 
q ( k )  = r l K P ( k )  

,he and  can  be removed via  a loop shifting  operation.  The  controller  equations  are also evident from t 
The model, &(G, O), is completely specified by the partitioning, 
additional  equations which effectively close the up- 
per  loop, giving a discrete-time  input-output  transfer 
function. 

X K  ( k  f 1) 

X K ( ~ )  = z - l x ~ ( k  + l), and q ( k )  = q ~ p ( k ) .  
. .  

To proceed augment the state-space interconnec- 
tion  to  create  inputs  and  outputs (including the  state 
equations) for the controller. Define the matrices, Q, 

In  the controller  implementation, q~ is measured, or 
estimated, from the environmental  parameters.  Ide- 
ally V K  = q ~ ,  although it is possible to  model mis- 
match  in the parameter  estimates by the inclusion of Ui and Vi by 

where 

& =  

U =  

an additional d j  term. 

system,  and satisfying 
The existence of a K giving a stable closed-loop 

1 1 ~ ( ~ ~ ( G 1 7 7 G ) l ~ ( ~ l r l K ) ) l l w  5 1 
1 

for all l q ~ l  = [ q ~ /  5 1, is equivalent to  the existence 
of positive definite matrices, 

R = diag(R,, R,, I ) ,  

and 

A 0 B1 0 B 2 1  S = diag(S,, S,, I ) ,  

such that 
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where we have expressed S and R as, 

s = pS + rs, P;: = pS > 0,  r: = -rs, 
and 

R PR f rR, P i  = PR > 0,  rk = -rR. 

In  the problem  formulated  here, we have implicitly 
chosen dim(xK) = dim(xc) which gives linear matrix 
inequality (LMI) expressions for the existence of I?, 
leading to a convex optimization  problem. 

If  we include  unmodeled  dynamics ( s  # 0) then 
we must  further  partition  the  identity matrices in- 
cluded in the definition of S and R, and include rank 
constraints  on  these  matrices.  The  rank  constraints 
are  not convex, which significantly complicates the 
search for a solution.  This  situation is analogous to 
that occurring  in the robust  control design problem 
with  structured uncertaillty and  it  can  be handled in 
a similar manner.  A convex upper  bound problem lL 
formulated by applying  scaling  matrices  on the sys- 
tem  inputs  and  outputs. An iterative  procedure, con- 
sisting of a controller desigu for the rescaled system, 
and a recalculation of the scaling  matrices, is  used to  
search for a matrix K meeting the above  conditions. 
This  iteration is equivalent to  the D-K iteration  ap- 
plied in the linear  robust  control  case. 

4 Pitch Axis Control  Problem 
Formulation 

4.1 Nonlinear pitch axis model 
An LPV model of the vehicle longitudinal axis dy- 
namics is developed and used to  create  a  control de- 
sign  interconnection (Fu(G,q) in the above). For 
simplicity, we initially  assume thct  the side-slip argle,, 
p ,  is zero. Three  actuators  are avail.tble for pitch  axis 
control: ueng (engine thrust  in z-body  direction); u b f  

(body  flaps);  and uel (elevons). The model equation 
development follows that in Etkin [9]. The  particu- 
lar  formulation of the aerodynamic effects is based on 
that provided  in the MSFC simulation. 

The simplified pitch  dynamics are expressed dif- 
ferentially for cy and q ,  the pitch rate,  as follows, 

ci! = q+w Fzw + s cos o w  cos @w, V 
q =  - TY + dl, 

I V Y  

where FZw is the force in the wind frame  z-direction, 
OW  and @w are  the wind frame elevation and bank 
angles respectively. The higher order  inertial  terms 

are included in d l  as, 

d l  = I z x ( T 2  - P 2 )  + I x y ( P  + Q T )  

+Iyz(+  - p q )  + ( I z z  - I x x ) w  

As these  are small and  can be  estimated  they will 
be treated  as a  measured  disturbance. We can also 
replace the gravity  term  in  the & equation  in the same 
manner: 

d2 = - COS 0, COS Cpw. 9 
V 

The X-33 aerodynamic model is expressed  in  body 
frame  coordinates, and  the pitch  axis z direction 
forces are given by, 

Q S C  FZB = FaerozB - -cnq(Q,  2v M )  4 + U e n g ,  

where S is the aerodynamic reference area, c is the 
referecce length,  and Q = p V 2 / 2  is the dynamic pres- 
sure.  Note that  the engine thrust vectoring input, 
ueng, is simply T,B, the engine thrust  in  the  z-body 
direction. The  z-body  aerodynamic force is given by, 

FaerozB = -QS ( C L ( ~ ,  M )  C L b f ( Q ,   M , ' U b f )  

+ C ~ e l  (a,  M ,  u e l ) )  7 

Note that  the aerodynamic coefficients are functions 
of a and Mach number, M .  

The  x-body force is given by a  similar  equation, 

F,B = FaeroxB + T,B, 

where T x ~  is the engine thrust  in  the  x-body direc- 
tion,  and  the  x-body  aerodynamic force is given by, 

FaeroxB = -Qs (GD(a, M )  + G D b f  (a ,  M ,  u b f )  

+ CDel  (a,  M ,  u e l ) )  . 

The relationship between the body  frame forces and 
the  Fzw force is, 

FZw = COS cy F z ~  - sin a F x ~ .  

The pitch  torque, ry, is given by, 

Ty = Qsc(Cprn(a7 M )  + C p r n b f ( Q ,  M ,  u b f )  

Q Sc2 
+ C p m e l ( a ,  M ,  W ) )  + T C p r n q ( Q ,  M ) q  

+Zen9 (m) u e n g  + zeng T X B  

-R,(m) FaerozB + R, Faero,B. 

The engine force moment arms  are xen9 and zeng. 
Note that  xeng moves as fuel is expended  and so is 
expressed here  as a function of mass, m. R, and 
R, are  the moment arms between the center-of-mass 
and center-of-pressure. Again, R, varies with  mass, 
and over the flight, regime we are considering,  changes 
sign. 
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4.2 LFT model approximation 
To  apply the  LPV  approach, we must  first  approxi- 
mate  the  above  equations, including the aerodynamic 
coefficient look-up tables, C L ( ~ ,  M ) ,  etc., by linear 
fractional  models  on the scheduling  parameters.  This 
is a time consuming  procedure, however it does  not 
need to be  repeated unless an aerodynamic  surface is 
modified. Figure  4 shows an example of this approxi- 
mation  procedure. For simplicity we show only  a rep- 
resentative  actuation coefficient, C(a, u) ,  assumed to 
be  independent of M ,  for M > 2. Two approxima- 
tions  are  shown to  illustrate  the trade-off between 
complexity and fidelity. The  first, shown in Fig- 
ure  4b), is 

C(a,  u)  = (c1 + C2Q)U, 

and  can  be expressed as  an  LFT  on a. The second- 
simpler-approximation,  shown in Figure 4c) is linear 
in u; 

C(a ,   u )  M c3 u. 

The scheduling parameters  are r n ,  V, p ,  and a. 
Note that  as a is also a state variable we must check 
closed-loop stability of the nonlinear  interconnection 
after  performing the design. In each  case we normal- 
ize the  parameters  to fit in the  LPV framework. For 
example, we replace  each  occurrence of V by an  LFT 
on rlv; 

( L a x  + Vmin) + (Vrnax - Vmin) v =  
2 2 r lV,  

= F U ( K f t , r l V ) ,  -1 I rlv 2 1 ,  

where 
0 (Kr,nx-Vr,,in) 

K f t  = 2 [ 1 ( K r r a i x ~ ~ n i n )  I 
and where  V  ranges  between and K1,,, under 
the specified operating  conditions.  Note that  1/V 
occurs in the model and  it  too can  be  expressed in 
LFT form, 

1 
V - = FZL(ivlf t , r lV),  -1 I rlv 21, 

with 
--(V,,,ax-K,,i,,) -(v*r,ax-v,rLi*,) 
(Kuax+Ku,u) (K,u+x+Kuiu) 

(Krlnx+Koin) (Kuaix+K,,in) 1 .  i V f t  = -2  

This  approach was applied to  the nonlinear effects 
of p ,  V,  and m. The  aerodynamic coefficients were 
approximated by LFTs  based on a. The  variation of 
Ivy ,  xeng, and R, was approximated by LFTs based 
on m. Many of the approximations  are  based  on the 

b) Angle-of-attack, cx 

deflection, u "-=:I" "- - .  - .  ->"" 

c) .. _" ._" 
. "" 

. .. " Angle-of-attack, a 

Figure 4: Aeroactuator coefficient approximation: a) 
C(a,  u )  look-up table values; b)  LFT  approximation; 
c) linear  approximation 
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Figure 5: LFT model of the pitch  axis  dynamics 

fact that a is typically close to zero during  this flight 
regime. 

The resulting LFT model has the form, 

FZW = -QS(CL f C ~ a a  + C L b f U b f  

+CLel uel)  1 

P 1 (1 + c n q )  q + - F ~ W  + dz, mV 

The  torque bias due  to  the x-body  direction thrust is 
modeled as a  measured  disturbance, 

d3 = z e n g  T z  B . 

LFT approximations  are used to  model the  terms, 
Q = p V 2 / 2 ,  l / m ,  1 / I y y ,  1/V, P ,  R x ,  C p m q ,  and 
Cpmel. The resulting model is illustrated in Figure 5. 
The parameter block, 0, has the  structure, 

0 = diag ( M z ,  ~ m 1 4 ,  ~ ~ 1 4 ,  ~ ~ 1 2 ) .  

Note that P is linear,  time-invariant, and expressed 
in  state-space  form. 

4.3 Design interconnection model 
The  LPV  control design problem  has been formulated 
for limited  operating  conditions  (pitch  axis  control for 
M > 2), and  must be  integrated  into the existing con- 
troller for testing  and verification. This places several 
constraints  on the controller  configuration,  illustrated 
in  Figure 6. 

The  upper two  vector inputs in Figure 6 are the 
estimated values required to  reconstruct the nonlin- 
ear  disturbance  terms, d l ,  d 2 ,  and d3.  The next  set of 
inputs  are  the scheduling  parameters. The reference 

right 
elevon qref ,   QIBref  

engine pitch 4,  Q I B  

torque  cmd 

Figure 6: Controller  configuration. The negative 
gains reflect the downward positive direction defini- 
tion of the aeroactuator deflections 

Figure 7: Multi-loop controller  arrangement 

command inputs  are specified by a  pitch rate refer- 
ence, q r e f ,  and a reference inertial to body  quater- 
nion, Q I B r e f .  The measurement  variables are q and 
QIB,   the estimated  inertial to  body  quaternion. Un- 
der some flight conditions  a  measurement of a is avail- 
able from a air-data systttm. 

The pitch axis controller is divided  into  several 
parts,  and  the controller structure is illustrated  in 
Figure 7. The C,, block uses a  small  angle  approx- 
imation to derive a  pitch angle error from Q I B r e f  

and Q I B .  Driving this  error  to zero is a primary de- 
sign objective. The pitch  angle  error is passed to  the 
Cp block, along with the guidance  system  generated 
pitch rate reference, q r e f ,  and  the  actual pitch rate, 
q.  The Cp block combines these  objectives and gen- 
erates  a modified pitch  rate reference, &,f. The Cp 
control block has the effect of adding  integral  control 
with  respect to  pitch  angle and is relatively  simple. 
It is not  detailed  further  here. 

The pitch rate  tracking controller, Cq, is required 
to handle the nonlinear pitch  axis  dynamics  and is 
designed via LPV  methods.  The remainder of the 
discussion focuses on Cq. 
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Figure 8:  LPV design interconnection 

Figure 8 illustrates the  LPV design interconnec- 
tion for the design of the controller C,. The  input 
and  output labels  match the signals illustrated in Fig- 
ure 2. 

The error signals are weighted angle-of-attack 
(specified via We),  weighted pitch rate error  (spec- 
ified via Wq),  and weighted actuation (specified via 
Wa). The  disturbance  inputs,  w, correspond to  the 
nonlinear  disturbance  terms dl ,  da, d,; the pitch 
rate reference, gTef, and a  vector valued noise signal 
(weighted via Wn). The direct inclusion of a weighted 
angle-of-attack  component  in the error  output is ap- 
plicable only if the desired angle-of-attack is  close tc 
zero. This is the case for X-33 ascent  control. For 
descent control the angle-of-attack is significant and 
the controller  performance  should  be specified with 
respect to a reference a. 

The controller  measurements, y, are pitch rate, q ,  
plus noise, nonlinear  disturbances, w1, plus noise, and 
the pitch rate reference, Q r e f .  The controller access 
to w1 will effectively create  a  disturbance feedforward 
cancelation of the drift  nonlinearities. The  addition 
of bounded noise to  this signal will prevent the con- 
troller from depending  on an exact  cancelation. 

The  LPV design  methods  outlined in Section 3 can 
be applied  directly to  the state-space  structure, G, 
illustrated in Figure 8. The resulting LMI problems 
can  be solved via  optimization  code provided in the 
MATLAB LMI toolbox. 

5 Discussion 

Attitude controllers which are scheduled on  the basis 
of the  trajectory may require redesign for subsequent 
trajectory modifications. The  LPV  methods investi- 
gated  here  attempt to  overcome this problem by bas- 
ing the scheduling on environmental and vehicle pa- 
rameters, effectively giving a design which is suitable 
for an  operational envelope. The use of the robust 
control framework allows for the specific inclusion of 
a level of uncertainty  in the design framework. It 
also provides computationally  based  robustness  tests 
which allow the designer to assess the stability  mar- 
gins with  respect to  the nonlinear  model. This con- 
trasts  with more standard approaches which consider 
the margins of linearized versions of the system along 
the trajectory. 

A significant difficulty encountered in using the 
LPV  approach is the formulation of the design model. 
The extensive lookup table based model must  be re- 
formulated  in  a more analytic  framework; specifically 
LFTs on the scheduling parameters.  This involves de- 
veloping approximations for each of the aerodynamic 
coefficients. There is a trade-off between the com- 
plexity and  the fidelity of these  approximations. The 
consequences of the trade-off can  only be investigated 
by running  through the design procedure  and com- 
paring the resulting  controllers'  performance levels. 

It is important  to  note  that  the  aerodynamic  ap- 
proximations are explicit, and  can be  revisited if 
greater  performance is required  or there is a configu- 
ration  change in the aerosurfaces. The explicit nature 
of the approximations is a significant advantage in re- 
viewing the design prior to  flight qualification. 

The control  problem  formulated  here considers 
only a  portion of the X-33 flight conditions  (ascent 
for M > 2),  and addresses  only the pitch  axis  control. 
The problems  encountered  here are  representative of 
other  parts of the operating  envelope,  although the 
designs and performance trade-offs will vary. 
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